DOCA/NaCl-induced chronic kidney disease: a comparison of renal nitric oxide production in resistant and susceptible rat strains.
نویسندگان
چکیده
Recent studies show nitric oxide (NO) deficiency is both a cause and consequence of chronic kidney disease (CKD). Reduced renal neuronal NO synthase (nNOS) abundance and activity parallel development of CKD with different models in the Sprague-Dawley (SD) rats, whereas Wistar Furth (WF) rats are protected against CKD and show preserved renal NO production. In this study, we compared renal NO in response to DOCA/salt-induced injury between the WF and SD. Studies were conducted on sham WF (n = 6) and SD (n = 6) and uninephrectized (UNX)+75 mg DOCA+1% NaCl (WF n = 9; SD n = 10) rats followed for 5 wk. Kidneys were harvested for Western blot, NOS activity, and histology. Other measurements included creatinine clearance and 24-h total NO production and urinary protein excretion. Absolute values of kidney weight were lower in WF than SD rats that showed similar percent increases with UNX+DOCA/NaCl. Proteinuria and decreased creatinine clearance were present in the SD but not the WF rats following UNX+DOCA/NaCl. Glomerular injury was mild in the WF compared with SD rats that showed many globally damaged glomeruli. Although renal nNOS abundance was decreased in both strains (higher baseline in WF), soluble NOS activity was maintained in the WF but significantly reduced in the SD rats. Renal endothelial NOS abundance and membrane NOS activity were unaffected by treatment. In summary, WF rats showed resistance to UNX+DOCA/NaCl-induced CKD with maintained renal NO production despite mild reduction in nNOS abundance. Further studies are needed to evaluate how WF rats maintain renal NO production despite similar changes in abundance as the vulnerable SD strain.
منابع مشابه
The role of nitric oxide in the protective action of remote ischemic per-conditioning against ischemia/reperfusion-induced acute renal failure in rat
Objective(s): We investigated the role of nitric oxide (NO) in the protective effects of remote ischemic per-conditioning (rIPerC) on renal ischemia/reperfusion (I/R) injury in male rats. Materials and Methods: I/R treatment consisted of 45 min bilateral renal artery ischemia and 24 hr reperfusion interval. rIPerC was performed using four cycles of 2 min occlusions of the left femoral artery an...
متن کاملEffects of lipopolysaccharide-induced septic shock on rat isolated kidney, possible role of nitric oxide and protein kinase C pathways
Objective(s): Pathophysiology of sepsis-associated renal failure (one of the most common cause of death in intensive care units) had not been fully determined. The effect of nitric oxide and protein kinase C (PKC) pathways in isolated kidney of Lipopolysaccharide-treated (LPS) rats were investigated in this study. Materials and Methods: Vascular responsiveness to phenylephrine and acetylcholine...
متن کاملCALL FOR PAPERS Cardiovascular-Kidney Interactions in Health and Disease Resistance to renal damage by chronic nitric oxide synthase inhibition in the Wistar-Furth rat
Erdely, Aaron, Gary Freshour, and Chris Baylis. Resistance to renal damage by chronic nitric oxide synthase inhibition in the Wistar-Furth rat. Am J Physiol Regul Integr Comp Physiol 290: R66–R72, 2006; doi:10.1152/ajpregu.00444.2005.—Chronic nitric oxide synthase inhibition (NOSI) causes chronic kidney disease (CKD) in the Sprague Dawley (SD) rat. We previously showed that the Wistar-Furth (WF...
متن کاملResistance to renal damage by chronic nitric oxide synthase inhibition in the Wistar-Furth rat.
Chronic nitric oxide synthase inhibition (NOSI) causes chronic kidney disease (CKD) in the Sprague Dawley (SD) rat. We previously showed that the Wistar-Furth (WF) rats are resistant to several models of CKD and maintain renal nitric oxide (NO) production compared with SD rats, whereas low-dose NOSI caused progression of CKD in WF rats. Here, we evaluate the impact of high-dose chronic NOSI in ...
متن کاملThe Role of Hypoxia-Inducible Factor/Prolyl Hydroxylation Pathway in Deoxycorticosterone Acetate/Salt Hypertension in the Rat.
KKidney disease could result from hypertension and ischemia/hypoxia. Key mediators of cellular adaptation to hypoxia are oxygen-sensitive hypoxia inducible factor (HIF)s which are regulated by prolyl-4-hydroxylase domain (PHD)-containing dioxygenases. However, HIF activation can be protective as in ischemic death or promote renal fibrosis in chronic conditions. This study tested the hypothesis ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 292 1 شماره
صفحات -
تاریخ انتشار 2007